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ABSTRACT

Identifying episodes of significant stress is a challenging problem
with implications for personal health and interface adaptation. We
present the results of a study comparing multiple modalities of
minimally intrusive stress sensing in real-world environments,
collected from seven participants as they carried out their every-
day activities over a ten-day period. We compare the data streams
produced by sensors and self-report measures, in addition to ask-
ing the participants, themselves, to reflect on the accuracy and
completeness of the data that had been collected. Finally, we de-
scribe the range of participant experiences—both positive and
negative—as they reported their everyday stress levels. As a result
of this study, we demonstrate that voice-based stress sensing
tracks with electrodermal activity and self-reported stress
measures in real-world environments and we identify limitations
of various sensing approaches.

Categories and Subject Descriptors
H5.m. Information interfaces and presentation (e.g., HCI): Miscellane-
ous; J.3. [Computer Applications]: Life and Medical Sciences—Health.

General Terms
Measurement, Design, Reliability, Human Factors.

Keywords
Ubiquitous computing; stress; sensing; voice; electro-dermal ac-
tivity; experience sampling; self-report; user modeling

1. INTRODUCTION

In the 2011 Stress in America survey, the American Psychological
Association warned that stress is becoming a public health cri-
sis [2]. Most Americans are suffering from moderate to high lev-
els of stress, with nearly half reporting an increase in stress over
the preceding five-year span. According to the APA, “job stress is
estimated to cost U.S. industry $300 billion a year in absenteeism,
diminished productivity, employee turnover and direct medical,
legal and insurance fees” [3].

In general terms, stress is the reaction of an organism to a change
in its equilibrium. In more practical terms, stress is the tension

that a person experiences in response to an external stimulus or
threat. Stress may have positive or negative affective outcomes,
depending on whether or not a person is able to effectively cope
with stress (see [4, 6, 34] for extensive discussions of how stress
is operationalized and measured in various health informatics
systems).

Longitudinal data about a person’s stress levels (and the con-
text(s) in which stress was measured) can be used to facilitate self
reflection about patterns of stress embedded in daily routines or as
caused by various environmental factors. Systems that promote
this kind of data-driven self-reflection are often referred to as
quantified self or personal informatics systems (e.g., [1, 14, 23,
241]). In addition, having knowledge about a user’s stress level can
be a valuable resource for adapting the interfaces of interactive
computing systems or collecting data about the ways that adoption
of a particular system affects levels of engagement, attention, or
frustration in the real world [31].

Because of the highly subjective nature of perceived stress levels,
researchers traditionally have relied upon self-report measures to
gather data about people’s experiences of stress. These techniques
include diary studies (e.g.,[1, 13, 34]) and in-situ experience
sampling method (ESM) studies [22] (also known in some re-
search sub-communities as ecological momentary assessment
[30]). These approaches, while suitable for short-term research
studies, present challenges when incorporated as part of a personal
informatics system that is intended to provide benefits to its users
over the long term. Diary studies are prone to memory effects and
reduced compliance over time [1, 22], and experience sampling
can be highly interruptive [17, 36] (which may, itself, become a
source of stress for a study participant or a system user). Although
the HCI community has developed adaptations to the ESM meth-
od, including delivery of surveys electronically and based on
sensed contextual information (e.g., [17, 19, 28]), these approach-
es still require a considerable investment in time and effort, in
order to provide insights about everyday stress and stressors over
time. Although this style of data collection might be well suited to
helping individuals to discover sources of stress within a particu-
lar time period, it would clearly not be as helpful when reflecting
over an arbitrary window of time or when aiming to maintain an
intended or desired response to stressors [24].

The increasingly pervasive sensing capabilities of our computa-
tional devices (cf. [29]) provide a valuable opportunity for contin-
uously and non-intrusively measuring stress levels [1, 12, 13, 15,
31, 32, 34]. These devices are also being adopted by medical pro-
fessionals and incorporated into long-term clinical treatments and
behavioral interventions that are designed to improve healthcare
outcomes [9]. However, because stress is a complex and multifac-
eted health issue, there are a variety of methodologies for auto-
matically collecting data about people’s levels of stress. Some
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Figure 1. The interface of SESAME. Left to right: the control panel for starting and pausing the passive sensing (i.e., StressSense
[25]); the notifications the app generates when it is time to complete a self-report survey; and the screens for self-report, including
the Taylor single-item stress measure [37] and a free-text region to elicit a subjective rationale for the previous selection.

approaches, such as heart rate or heart rate variability, provide
relatively direct and accurate measurements of stress, but come
with undesired trade-offs in terms of the intrusiveness of meas-
urement (e.g., [7]). Other approaches rely on secondary physio-
logical signals, such as skin conductivity (referred to as electro-
dermal analysis or EDA), to detect changes in arousal that may be
linked to stress [4, 12, 31, 33, 34] at the cost of some degree of
fidelity (e.g., affective valence). Monitoring changes in vocal
production [8, 25, 35] is a far less invasive approach but may be
limited in the accuracy that can be achieved or the diversity of
environments in which it is effective. Because different sensing
modalities capture different representations, granularities, and
quantities of stress data, most of the previous systems that have
been proposed or developed for collecting stress data triangulate
among different data collection methods, depending on whether
they have aimed to create the most robust possible user model
(e.g., [7, 8, 32]) or to explore issues related to sensor deployment
and integration (e.g., [12]) or to design visual representations of
stress to reflect back to end users (e.g., [13, 27, 34]).

In our research, we are interested in supporting long-term en-
gagement with one’s own perceived stress levels. One of the cen-
tral challenges in creating these types of systems is in determining
what kind of stress-related data to collect in order to strike a bal-
ance between reliability—that is, how closely the data accurately
and consistently track a person’s perceived stress at the moment
that it occurs—and intrusiveness—that is, how much effort is
required on a participant or user’s behalf to provide the data. Pre-
vious research has focused on developing techniques for monitor-
ing stress levels, often by triangulating among multiple data
sources (e.g., [7, 8, 32]). In this paper, we present the results of a
study designed to compare different kinds of data understand how
we might collect these data with the minimal cost to the users.
Among the kinds of sensing technologies that continuously moni-
tor stress levels with a minimal impact on participants’ daily lives,
which track one another and participants’ self report most closely?
Under what conditions or in what contexts? When do these sens-
ing modalities agree with one another, and when do they produce
conflicting narratives about daily stress?

We designed and ran a study to answer these questions. Over the
course of 10 days, we collected a variety of stress measures from
a small group of participants during their everyday activities. We
then compared the different data streams produced by traditional
self-report measures and minimally invasive sensing devices

(EDA and voice-based stress recognition). In addition, we con-
ducted post-study interviews, asking the participants, themselves,
to reflect on the accuracy and completeness of the data that had
been collected. In this paper, we present several outcomes from
this study that represent specific research contributions: (1) we
present evidence that voice-based stress sensing tracks with varia-
tions in EDA and self-reported stress measures in real-world envi-
ronments; (2) we describe the range of participant experiences—
positive and negative—as they reported their stress levels; and (3)
we reflect on some of the limitations of the various sensing ap-
proaches and the ways that our participants’ experiences can help
to inform the design of future personal stress informatics systems.

2. STUDY DESIGN

Our smartphone app, SESAME (Stress Experience Sampling And
Measurement Experiment), was designed to collect data about
individuals’ stress levels and the environmental contexts within
which this stress is experienced. It runs on the Android mobile
operating system. Data is collected in the following three ways:
(1) passively via sensors on the mobile phone, (2) via self-report
measures also on the mobile device, and (3) via an Affectiva Q
Sensor, worn on the wrist. The data collected on the smartphone
device are cached locally on the device and pushed to the server in
batches when the device is both plugged in to a power source and
connected to a Wi-Fi network, most commonly during each night.

At short time intervals, SESAME infers an audio profile (silence,
non—human-voice noise, stressed voice, not stressed voice) from
microphone data. As recording audio can raise particular privacy
concerns, the audio feature extraction and profile labeling takes
place on the device—see previous work for more details (e.g.
[25]). Due to limitations of the operating system, audio profile
sensing is suspended when the participant makes or receives a
phone call.

SESAME'’s user interface (Figure 1) is minimal, consisting of two
icons in the system notification bar. Tapping the first icon pre-
sents the option to pause passive data collection. Tapping the
second launches the self-report panel, which includes single-item
measures assessing momentary stress and momentary affect, as
well as an optional short free-text response to the prompt, “I feel
stressed (or not) right now because....”. To capture momentary
stress we used Taylor’s 5-item measure [37] that prompts “right
now, I am (1) feeling great! (2) feeling good (3) a little stressed
(4) definitely stressed (5) stressed out!” (Figure 1(c)).



We used the Affectiva device [33] to gather data about partici-
pants’ electrodermal activity, which provides an indication of
physiological arousal; as described above, this measure is associ-
ated with momentary stress. The Affectiva is worn on the inside
of the wrist and is about the size of a wristwatch. Data gathered by
an Affectiva was cached on that device and retrieved by the re-
searchers at the conclusion of the study.

2.1 Experimental Protocol

Prior to the study period, each participant completed a short ques-
tionnaire. In addition to basic demographic information and ques-
tions about prior smartphone usage experience (including use of
personal informatics [1, 23, 24]), participants reported traits for
affect (PANAS) [38] and stress (PSS-14) [10], as well as a meas-
ure of mindful attention awareness correlated with a variety of
wellbeing constructs (MAAS) [5].

During the day preceding the study, each participant was intro-
duced to the SESAME app. After being trained on paus-
ing/restarting sensing and responding to ESM prompts, partici-
pants were encouraged to make a handful of sample reports using
the app and receive answers to any questions they might have.
Because the continuous sensing and sense-making components of
the system are computationally intensive and can drain a
smartphone battery before the end of a full day, six participants
used the system on a secondary, loaned phone (an LG Nexus 4),
which they carried with them for the duration of the study. Over
the next ten days, participants were asked to run the SESAME app
between the hours of 8:00am and 11:00pm (at a minimum) and to
make self-reports in response to notifications (issued every half
hour with a small random variation) as they were able. Partici-
pants were also free to volunteer additional self-reports at any
additional time. Because we were most interested in collecting
ground truth data from our participants using ESM over a rela-
tively short window of time, we opted to increase the prompt fre-
quency to the upper end of what is typically considered acceptable
practice [36] and to forego contextual suppression of stress report-
ing prompts (e.g., [17, 19]). Participants were informed that our
goal was to collect as much stress data from them as was practi-
cal, but that they should feel free to ignore these frequent prompts
if they occurred during attention-sensitive tasks like driving or if
responding would be socially inappropriate (e.g., during a family
dinner or while on a date).

Due to the limited number of Affectiva Q Sensor devices availa-
ble for deployment during the study, we randomly divided our
participants into two groups; participants in Group 1 collected
EDA data on study days 1-5 and participants in Group 2 collected
EDA data on days 6—10.

At the conclusion of data collection, we conducted a 20- to 30-
minute semi-structured interview with each participant to gather
qualitative information about their experiences using the SESA-
ME app.

2.2 Participants

We recruited a small cohort of participants in person by conven-
ience and snowball sampling. In an effort to hold stress profiles as
constant as possible, we recruited only graduate students and
postdoctoral researchers from within a single academic depart-
ment at our institution. Participants received no compensation for
participating in the study.

Of the original 11 participants recruited, n=7 completed the study;
two participants chose not to continue beyond the first two days,
and two others did not respond consistently to the self-reporting

prompts during the data collection phase. Six of the seven partici-
pants who completed the study were male and one was female; six
were aged 26-35 and one was aged 18-25. All but one participant
owned and regularly used a smartphone (six Android, one iOS),
and while six participants reported tracking personal information
(such as sleep, exercise, spending, or mood) using websites or
apps, no participant reported regularly using or wearing external
sensors like the Nike FuelBand'.

2.3 Analysis

Over the ten-day deployment, and with a pre-test questionnaire
and a semi-structured interview, we have collected many types of
data often at different temporal resolutions. Here, we describe
how each form of data was preprocessed and then analyzed.

2.3.1 Data Preparation
Data from the pre-test questionnaire was prepared according to
each instrument’s directions (see [5, 10, 38]).

For both passively collected and self-reported data, we discarded
samples outside of the time range dictated by the study parame-
ters. To maintain consistency, participants were asked to use the
system between the hours 8:00am and 11:00pm daily, but some
used the system outside this time range (e.g., making self-reports
early in the morning or wearing the Affectiva late at night).

We inferred physiological arousal based on the EDA data provid-
ed by the Affectiva Q Sensor. In stressful situations, the sympa-
thetic nervous system activates the sweat glands. EDA devices
like the Q Sensor estimate the amount of sweat secreted by meas-
uring changes in the electrical conductance of the skin [33]. Once
we retrieved the raw EDA data from the wrist-worn devices, we
normalized the time-series data using a Z-normalization tech-
nique, which centers the data distribution about a zero-mean and
scales it, resulting in unit-variance. We used a 20-second long
window with 10-second shift to extract high-level features from
the normalized EDA data. EDA has a fast-changing response
(startle response) when stressors are present, so some of the fea-
tures that we extracted include the mean crossing rate, the energy
associated with low-frequency filter bank, the slope of the linear
regression, and minimum and maximum values, all of which have
been shown to capture aspects of this startle response [16]. We
trained two single-component Gaussian mixture models (one for
modeling the aroused condition and another for modeling neutral
or non-aroused conditions) with a full covariance matrix based on
a . We then used a GMM-based model to classify the EDA data
into a binary value—aroused or not aroused—every 10 seconds
over 20-second windows, using a threshold of .85. (On the pre-
existing dataset, this GSR-based stress model has a performance
of 74.3%, 76.5% and 78.4% in terms of accuracy, recall and pre-
cision, respectively.)

Continuously sensed audio yielded inferences every 1.2 seconds.
To aid in comparison across measures, we elected to smooth all
passively sensed inferences into 5-minute windows using a simple
majority rule; smoothing to tighter (1-minute) windows did not
appreciably change the results.

2.3.2 Comparisons over Modalities

One of the central questions that this research seeks to address is
the reliability of various widely deployable stress-sensing tech-
niques in a range of real-world scenarios. It is clear that some of
these approaches will be more suitable in detecting stress in cer-
tain situations. For example, recognizing stress from voice will
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Table 1. A summary of the experience sampling-driven self-report data provided by our study participants.

Participant ID Number of Stress Self- Completed Reports to Avg. Delay in Self-report Avg. Self-reported Stress
(EDA Group) reports Completed Reminders Sent Ratio Response (min:sec) Level (5=high, 1=low)
1 (early) 62 38% 6:17 2.66
2 (early) 88 44% 7:53 2.09
3 (early) 128 13% 7:09 1.82
4 (late) 173 36% 7:49 1.87
5 (late) 99 10% 19:22 1.90
6 (late) 162 9% 6:45 2.86
7 (late) 172 46% 7:02 232
Averages 126.3 28% 8:54 2.22

necessarily be more accurate when a person is engaged in a con-
versation than when they are working alone; the EDA signal will
change in different ways during physical exercise than when a
person is experiencing emotional or cognitive stresses [33]. Fur-
thermore, while subjective self-assessment of stress levels (e.g.,
with the PSS-14 instrument [10]) has been shown to have high
internal consistency and predictability, many of these types of
instruments have been designed to examine stress as a trait, fram-
ing stress in the context of life events that take place over the
course of weeks or months. Since there is no clear-cut and estab-
lished gold standard for globally measuring stress levels in an
ecologically valid, non-intrusive way, we set out to determine the
circumstances in which a variety of established stress measuring
mechanisms, including EDA, continuous voice-based stress
recognition, and self-reported stress levels, do and do not align
with each other.

In comparing self-report measures, captured at a resolution of 30
minutes, inferences from continuously sensed sources were
smoothed over 1 hour windows prior to the self-report. This is
because the self-report stress literature indicates that momentary
psychological stress is a function of the current stress trait, and
recent daily stressors; further, we confirmed that this is how our
participants made self-report assessments from the semi-
structured interviews. Because data most closely co-occurring
with the self-report will have a greater effect on experienced
stress, we computed a weighted mean over the data in the win-
dow, giving preference to the most recent data points; again, fea-
ture selection was by simple majority. This happens for each self-
reported value for each user; we then normalize and assess the
relationship for each self-report value, one to five, with both elec-
trodermal and voice-stress inferences.

2.3.3 Interview data

We referred to the semi-structured interview data to help make
sense of discontinuities in the sensor data streams and to inform
our understanding of the participants’ experiences using the sys-
tem, including how and when participants provided data over the
various modalities that we used.

3. RESULTS AND DISCUSSION

3.1 General Participant Experience / Use

Over the course of the study, 15 hours per day for 10 days, SESA-
ME collected a significant amount of data about stress and stress
contexts experienced by our 7 participants. The system recorded
some 17,415,310 audio profile inferences, 884 self-reports, 56,837
location measurements, and 9,400,139 EDA measurements.
Smoothing and binning the data into manageable windows (as de-

scribed above) yielded, on average, 1,192 location measurements,
1,066 audio profile inferences, 126 self-reports, and 15,368 aroused
or not aroused inferences from the EDA data per participant.

The number of stress self-reports completed over the course of the
study (a ~40% response rate) had dramatic variance (1,982), with
several participants [P4, P6, P7] each providing more than 150
responses (Table 1). Most of the self-report survey submissions
appear to have been direct responses to SESAME’s experience
sampling prompts—appearance of an auxiliary status bar icon, a
short vibration sequence, and the notification LED set to pulse a
purple color. However, most participants voluntarily submitted at
least a few instances of un-prompted self-reports, with P2 submit-
ting the largest number (11).

During the study, the smartphone application was programmed to
issue the participants a reminder to complete the experience-
sampling questionnaire approximately once every 30 minutes. In
practice, many experience-sampling responses were delayed due
to constraints of the threading model used by the operating system
or an app crash, or the participants simply did not respond to the
notifications. There were a number of reasons why this may have
been the case: the vibration pattern associated with the notifica-
tion was somewhat subtle on some of our participants’ phones
(particularly on the Nexus 4s), and participants told us during our
post-study interviews (see also below) that they would voluntarily
ignore the notifications if they were engaged in an activity that
demanded their attention (e.g., a conversation or driving) or if
their hands were otherwise occupied (e.g., cooking, playing with
children). The algorithm that generated the experience sampling
notifications was also linked directly to the system timer, rather
than being driven by the last time that a self-report survey was
submitted. This resulted in a number of occasions in which a par-
ticipant would notice that they had neglected to complete a survey
in response to a prior reminder, submit the survey, and immediate-
ly be notified that it was time to complete another; many of these
subsequent self-report reminders were ignored.

On average, our participants completed surveys a little less than
1/3 of the time that an experience sampling notification was is-
sued. Compliance ranged from 9% to nearly 50% across our
group of participants. For those self-reported surveys that were
completed in response to an experience sampling notification, the
average delay between the system issuing an experience sampling
reminder and the participant invoking the self-report survey
mechanism was 8 minutes, 54 seconds (excluding delays longer
than 30 minutes, which indicated an error or crash in the applica-
tion). There were a fairly large number of very quick responses in
our dataset (as little as 3 seconds elapsed from notification to
invocation of the survey), but much of the time, the participants
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simply did not or could not respond until tens of minutes had
elapsed. The only real drawback to this response rate is that our
self-report data is scattered somewhat unevenly over our data
collection window, as our analysis examined the passively sensed
stress rates at whatever time the self-report surveys were complet-
ed. Interviews suggest that periods of time associated with very
high levels of stress are under-reported in the self-report data,
leading an artificial downward skew of the self-reported stress
levels.

Although participating in the study did result in frequent interrup-
tions due to our use of experience sampling to collect self-report
data, participants were able to complete these three-question sur-
veys quickly, with an average start-to-finish time of 20 seconds
and a median of 17 seconds; this excludes 5 outliers over 5
minutes where the survey activity appears to have been interrupt-
ed by another smartphone function.

We also ran a number of paired f-tests in order to determine
whether participants’ responses to the pre-test surveys (MAAS,
I-PANAS-SF, or PSS-14) were effective predictors for the aver-
age stress levels reported over the course of the study. We found
no significant differences that would suggest a relationship, alt-
hough we did observe a very weak trend (p=.112) suggesting a
correlation between participants’ score on the PSS-14 and their
average self-reported stress levels across the 10 days of the study
(r=562). A study with a larger sample size would be needed to
more rigorously assess the predictive power of PSS-14 in empiri-
cally determining a per-person baseline stress level.

3.2 Comparison of Modalities

3.2.1 Scenarios and Stress

We anticipated that each capture modality would, for individuals
and in aggregate, reflect similar daily stress rthythms, and this bore
out in our data. Voice-based stress measures were most pro-
nounced on weekdays in the early and mid afternoon. There is a
second, smaller peak in the late morning; detection of voice stress
before mid-morning or after dinnertime is rare. Voice stress is
prevalent for several users on one or two particular days (e.g.,
P4’s day 10 and P6’s day 3). EDA data also peaks in the early- to
mid-afternoon, overall, and dramatically so for participant P3.
Overall, self-reported stress remains relatively constant through-
out the day, although there are fewer reports of “A little stressed”
once the evening begins. Of note is that not a single participant
self-reported the most stressed value “Stressed out!” over the
course of the study. This unexpected gap in the data highlights
one of the key shortcomings of the traditional self-reporting ap-
proach to tracking stress levels: in situations where a participant is
experiencing the highest levels of stress, they are extremely un-
likely to stop what they’re doing and attend to an experience sam-
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Figure 3. The probability of voice-stress presence in a 1-hour
window associated with self-reported stress.

pling prompt. This reporting bias has been noted previously [36],
but is of particular interest when the construct being investigated
relates so closely to a major factor in survey response compliance.

The sound profile that appeared in conjunction with experiences
of stress is also interesting. The audio classification corresponding
to the times that self-reports were given was most commonly
noise or silence. P2 and P4 additionally reported feeling “good”
when there was unstressed voice present on multiple occasions.
On four devices, the audio capture silently failed occasionally,
and so self reports, particularly for P1 and P7, were also made at
times for which we have no noise profile information; we have no
reason to believe this occurred in periods of particularly high or
low perceived stress and should not therefore bias our findings.

3.2.2 Associating Stress from the Three Modalities

In investigating whether the minimally invasive passive measures
(voice-based stress detection and EDA) could be reliably used to
monitor stress levels in the wild, we report the voice-stress and
EDA data collected simultaneously with self-reported stress, as
well as with one another. Not all self-report points have associated
EDA or voice-stress data, because (1) each participant wore the Q
Sensor for only for half of the study days; (2) as a result of the
occasional audio capture crash, as described above, there are some
windows of time lacking raw audio data upon which to draw
voice-based stress inferences; and (3) there were occasions when
participants chose to disable the passive sensors, such as when
swimming, washing dishes, or to conserve the phone battery.

3.2.2.1 Self-report Stress with EDA

Over the self-report values 1-4, we see a cup-shaped curve, as
responses 1 (“feeling great!”) and 4 (“definitely stressed”) corre-
spond to higher levels of arousal than responses 2 (“feeling
good”) and 3 (“a little stressed”). This distinction emerges most
clearly at higher EDA classification thresholds; here we report
with a threshold of .8, selected by experimentation (Figure 2).

These data confirm that EDA provides an indication of the inten-
sity of perceived stress responses, that is, the more strongly a
participant agrees or disagrees that they are under stress, the
stronger the EDA signal recorded by the system. However, the
main drawback of the EDA approach is also highlighted here—it
is statistically impossible to detect from EDA data alone the va-
lence of the perceived stress response, that is, whether increased
arousal is associated with pleasant experiences or the negative
experiences that we typically associate with being under duress.
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3.2.2.2 Self-report Stress with Voice-stress

In associating self-reported stress values with voice-stress, we
report a weighted mean of voice-stress (1) and voice-no-stress (0),
also computed over a 1-hour window (Figure 3). There is a posi-
tive correlation of r=.59 over the self-report values 1-4, which we
anticipated. However, the relationship peaks not at 4 (“definitely
stressed”) but at 3 (“a little stressed”); we believe this is because
participants self-reported much less frequently when experiencing
higher levels of stress.

This positive correlation revealed in our data suggests that analy-
sis of passively collected voice signals can result in reasonably
accurate detection of stress episodes without requiring any partic-
ipant/user intervention at all. However, the success of this ap-
proach is clearly dependent on the presence of a clear voice sig-
nal; stressful situations in which vocalizations are not present
cannot be inferred at all.

3.2.2.3 Voice-stress with EDA

In Figure 4, we examine the distribution of EDA aroused/non-
aroused responses (threshold=.75, selected by experimentation)
both independent of, and in the presence of, positive voice-stress
recognition. The red bars show the distribution of arousal inferred
from EDA in one-hour windows over the entire study. For exam-
ple, in about one-fifth (y-axis) of the windows, we detected a state
of high arousal for 40% (x-axis) of the reports collected during
that window. Similar to a histogram, the relatively normal distri-
bution of the red bars illustrate that it is relatively common to
observe a relatively even mix of aroused and non-aroused read-
ings from the EDA sensor during any given hour; it is more unu-
sual for a one-hour window to be dominated by aroused or non-
aroused inferences.

The green bars also show the distribution of EDA arousal in one-
hour windows, but in only those windows in which we also in-
ferred the presence of voice stress for the user in question. The
probability mass shifts rightward when we examine only these
EDA reports that correspond to sensed stress from the voice chan-
nel. This shows that EDA and voice-based stress recognition gen-
erally track one another in the positive case; that is, over a one-
hour window, when we observe consistent stressed responses
using the voice-based recognizer, we are also more likely to see
aroused inferences from the EDA sensor during this time.

The small rise at the left end of the green bar distribution is wor-
thy of note, however. This artifact reveals that there were a small
(but noticeable) number of one-hour windows in which the EDA
sensor was resulting in a much greater number of non-aroused
inferences than aroused inferences, but the voice-based stress
recognizer was detecting instances of stressed voice. When trian-
gulating raw sensor and location data with interviews, it appears
that this disagreement is a result of P6, a teaching assistant, calm-
ly listening to several hours of student presentations, and P7 relax-
ing at home while eating breakfast or dinner while watching ac-
tion movies on TV. In both cases, the system was (correctly) de-
tecting stressful vocalizations, just not ones generated by the par-
ticipants themselves. Adding a speaker ID filter to the system
would mitigate these instances of false positives.

3.3 Semi-Structured Interview Feedback

Some of the frustrations that participants reported included the
troublesome drain on the phone battery caused by our implemen-
tation of continuous passive sensing and a concern that being
repeatedly asked to consider and report on one’s stress could itself
become a stressor—P7 even went so far as to “mentally rename
the app Keep Calm” so that he could continue participating with-
out feeling overwhelmed. Although, P7 also felt that “sometimes
the device felt like a box I could put my stress in, and move on.”
Several participants agreed with P4 that even through the self-
report prompts occurred very frequently, the interaction required
to acknowledge the prompt and complete the associated survey
was “very light.”

The self-report stress measure was criticized in two ways. First,
participants felt that there was need for a “not stressed and not
unstressed” option between “feeling good” (2 on a 5-point Likert
item) and “a little stressed” (3 on a 5-point Likert item). Second,
two participants agreed with P6 who wanted greater resolution of
the scale:

1 would compare it to previous times I had answered, and

1 would feel a little more stressed, but not enough to take

it to the next level, so I'd put the same as last time. [P6]

The experience of wearing the Q Sensor during the study was
widely reported to be “easy,” although one participant found the
strap too tight and another commented that the device kept slip-
ping out of contact with her skin. The Affectiva was the only visi-
ble aspect of participation in the study and it did spark some con-
versation about the device, the study, and the stressors that had
been experienced (and noted) by the participants during the study.

Participants did not widely report privacy concerns as a result of
participation in the study. P6 explained that any privacy concerns
were mitigated by the potential reflective benefit of such a tool:
“The question [of whether there are privacy issues implicated in
use of the system] is, do you believe in the values of the app?
Here, I feel like the app is helping me be aware of and control my
stress.” PS5 noted that while she had few concerns since she was
informed about and understood what the system was doing, her
friends became uncomfortable when they learned that audio sens-
ing was taking place via her smartphone’s microphone; friends of
P2 expressed similar concerns. This finding illustrates one of the
more complex trade-offs in the design of systems like SESAME:
even when approaches can be developed to sense stress without
directly burdening the user (e.g., voice-based stress recognition),
there may be tacit social costs implicated in these decisions.



Table 2. An overview of stress detection methods explored in this study and their contexts of use.

Data Collection Method

Measures

Effective contexts

Less-effective contexts

Experience sampling-driven
self-report [22, 30]

Collection of the Taylor single-item Scenarios in which the user’s subjec-

stress measure [37], an open-ended
rationale for stress level, and affect

tive perception of stress is valuable;
provides (potentially) finer descrip-
tive resolution

When interruptions are not desirable
(e.g. work, driving, social engage-
ment); interruptions may adversely
influence the user’s stress level

Electrodermal analysis
(Affective Q Sensor [33])

Physiological arousal via skin con-
ductivity

Most day-to-day contexts; most valu-
able when contextual valence already
known

Physical discomfort of or preferences
against wearing device; expense lim-
its scaling of participant pool

Voice-based stress analysis

Variation in vocal characteristics
(pitch, speaking speed, vocal
energy)

Many day-to-day contexts in which
user will be regularly speaking; where
on-device feature extraction possible

Ineffective in quiet or noisy spaces;
currently only provides coarse metrics

The use of the microphone in a smart phone as a sensor for cap-
turing voice, while effective in the lab [26], had various conse-
quences in the wild. First, multiple participants reported unex-
pected holes in the audio profile data with respect to voice-stress.
Because SESAME could not access the microphone during phone
calls, phone conversations with remote friends and family, not
unusually an opportunity to talk through experiences of stress,
were not captured. Secondly, even though the device is not actual-
ly recording audio files, there is a sense among a few participants,
and others around them, that this might be a privacy concern.
Allowing users to censure sensed data after the fact has been ef-
fective in other physiological sensing systems (e.g., [18]); more
control over personal sensed data could also help alleviate privacy
concerns in SESAME. Third, the voice-stress classifier used in
SESAME did not learn, so using an adaptive voice stress recogni-
tion algorithm could improve the classification.

Although our data collection app also recorded location and activ-
ity during the study, we do not report on the relationship between
location or activity and the other sensed/reported data here. Future
analysis will consider the automated recognition of physical re-
gions of interest and their association with stress levels, as well as
the potential for using accelerometer-based activity recognition
for identifying stress or increasing the robustness of voice- or
EDA-based approaches.

While we attempted to control for stress profiles and daily stress-
ors for this study, it is possible that characteristics of our partici-
pant population impacted the results. For example, much of their
work takes place collaboratively in spaces relatively free of back-
ground noise. Our results should be confirmed in larger, more
diverse populations.

4. CONCLUSION

We examined minimally intrusive mechanisms for measuring,
inferring, and eliciting characterizations of a user’s stress. We
demonstrated that voice- and EDA-based classifiers produce rep-
resentations of stress that correlate with self-reported measures of
perceived stress and with one another in real-world environments.
As a result of this research, we identified contexts in which the
various sensing approaches are more or less effective (Table 2).

We found that self-report remains the mechanism through which
the most accurate representations of low and moderate levels of
stress can be collected from participants, as well as the only
mechanism that can be easily augmented to understand the source
of stress; however, contextual augmentation could be provided in
the personal informatics reviewing interface. Our results indicate
that self-report is also useful for validating or correcting stress
models constructed based on automatically sensed data. The main
drawbacks of self-report are its intrusiveness, which might be

mitigated through the use of context-aware prompting (e.g. [17,
19]) and the fact that the method is still unlikely to reveal episodes
of intense stress, simply because users can choose to ignore expe-
rience sampling prompts during those experiences.

Based on our empirical data, EDA- and voice-based stress recog-
nition both provide less invasive yet still reasonably robust repre-
sentations of stress in real-world environments; certainly when
these two channels agree we can be confident the user is experi-
encing stress. Further research is needed to develop robust sensing
of EDA or the intensity of stress using only those sensors users
already carry with them. And future work will also need to ad-
dress a number of weaknesses of voice-based stress sensing that
we have identified, such as a higher incidence of false positives
and the potential for raising privacy concerns. Several of these
false positives can be mitigated by adding a speaker ID filter to
the system, while affording user censure of sensed data (e.g., [11])
should continue to alleviate privacy concerns already partially
addressed by the system design.

Stress is a factor in so many facets of health and wellbeing. Our
study provides an encouraging starting point for informing the
design of minimally invasive ubicomp systems for sensing stress.
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